Models for Type Ia Supernovae and Cosmology (P. Hoeflich/ U. Texas at Austin) - I) Introduction - II) Explosions, light curves and spectra - a) Scenarios - b) Model calculations - c) General correlations - d) Individual objects - III) Application to cosmology and evolutionary effects with z - IV) Conclusions & future perspectives #### **Incomplete list of collaborators:** Baade (ESO); Dominguez (Grenada/Spain); Fesen et al. (Dartmouth); Khokhlov etl al. (NRL/Washington); Nomoto et al. (Tokyo/Japan); Spyromillo (ESO); Stein (Jerusalem/Israel); Straniero et al. (Rome/Italy); Tornambee et al. (Teramo); Thielemann et al. (Basel/Switzerland); Wang (LBL/Berkely), Howell, Marion, Wheeler (Austin); ... #### MODELS FOR SUPERNOVA EXPLOSIONS #### Questions to be addressed - What is the nature of the supernovae? - We understand the observed correlation? (e.g. brightness decline relation for SNIa) - Are normal bright and subluminous SNeIa the same kind of beast? - Can we determine Ho independently from the distance ladder? - What systematic effects do we expect and how do they show up in the observable quantities ? - Can we find new relations which improve the accuracy? - . . . #### Evidence for Evolution (Wang, Hoeflich & Wheeler, 1998, ApJ 483, L29) Brightness and color as a function of distance in the hostgalaxy - Larger dispersion in B central regions - Bluer SNe Ia in central regions - \Rightarrow Intrinsic variation and not reddening This may/can be corrected by the $M_V(dM15)$ relation (Schmidt et al. 1998, ApJ 507, 46) #### II. Cooking of a Supernova - A) Stellar evolution of a low mass star (M< 7Mo, 1E9 years) + mass-loss - => initial structure of the WD Method: Spherical stellar evolution code (Chieffi, Limongi & Straniero 1998, ApJ 502, 737) - B) Quasi-static evolution of the progenitor (1E6...8 yrs) + accretion - => initial structure of the WD at the time of the explosion (SS-X-ray sources) Method: Spherical accretion code (Hoeflich et al. 2000, 528, 590) - C) The thermonuclear runaway (few hours) - => preconditioning of the explosive phase Method: B) or 2D-hydro code (Hoeflich & Stein, 2001, ApJ in press /see also Vulcan) - D) Hydrodynamical phase of explosion (1 to 60 sec) - => nucleosynthesis + release of explosion energy Methods: Spherical rad. hydro including nuclear network (Hoeflich et al. 2000, ApJ 528, 589 +refs.) + 3-D hydro for deflagration (Khokhlov 1998, J. Comp. Phys. 143, 519) E) Light curve (month to years) => time evolution of the expanding envelope Methods: D) + NLTE/LTE occupation numbers (see D) F) Detailed spectra (snapshots in time): Methods: Spherical + 3D rad.transport + NLTE (Hoeflich 1995, ApJ 443, 89 + hab.thesis + refs.) ## **Explosions, LCs and Spectra** #### Free Parameters for - I) Explosion of M(Ch)-WD - Central density of the WD (dependents on accretion rate) - Chemical profile of the WD (from stellar evolution) - Description of the burning front (e.g. Deflagration, DD-transition) #### II) Merging WDs - Mass of extended envelope for mergers #### III) He-triggered explosions of sub-Chandrasekhar WDs - Total mass of He (depends mainly on accretion history) #### => Observables - a) Monochromatic light curves - b) Spectra including their evolution with time - c) Polarization and directional dependence of luminosity ## Physical Methods and Numerical Code/Modules ## **Example: Thermonuclear Explosions** ## **Example: Numerical Environment for LCs & Spectra** ## Example: Numerical Environment for Polarization Spectra ## Example: statistical model for subluminous SneIa Detailed atomic models constructed from Kurucz (1993): | Ion
CI | Levels | b-b for rate eq. | for radiation transport | |------------------|------------|------------------|-------------------------| | CI | 27 | 123 | 242 | | OI | 43 | 129 | 506 | | MgII | 20 | 60 | 153 | | Si II | 35 | 212 | 506 | | Ca II | 41 | 195 | 742 | | Ti II | 62 | 75 | 592 | | Fe II | 137 | 3120 | 7293 | | Co II | 84 | 1355 | 5396 | | Ni II | 71 | 865 | 3064 | | SUM | 520 | 6134 | 18650 | - Adjoining ionization stages are 3 to 5 levels - about 1E6 additional lines with LTE-population and calibrated thermalization - bf- and ff-cross sections from opacity project - for LC and aspherical spectra, the multiplets have been 'merged' - Discretisation: ``` Spherical atmospheres: 95 spatial points, 2 to 3E4 frequencies Aspherical " : 69/69/(69) " " , 1-3000 frequency groups (narrow line limit) LC and gamma's : 911 " " , about 3000-5000 " " (") ``` ## I) Scenarios #### 1) Progenitors: Accreting White Dwarfs Start: WD of 0.6 to 1.2 Mo **Evolution:** Accretion of H, He or C/O rich material **Explosion:** Ignition when nuclear time scales are shorter than hydrodyn. 2) Progenitors: Merging White Dwarfs #### **Explosion of a White Dwarfs (Defl., Delayed Det. & Merger)** Deflagration: Energy transport by heat conduction over the front, v << v(sound) => ignition of unburned fuel (C/O)Detonation: ignition of unburned fuel by compression, v = v(sound) Rem1: Pre-expansion depends on the amount of burning. The rate of burning hardly changes the final structure for DD-models (Dominguez et al. ApJ 528, 590) Rem.2: HeDs (sub-MCh) - disagree with LCs and spectra (Nugent et al. 96, Hoeflich et al. 96) #### Propagation of the Deflagration Front (from Khokhlov, 2001, ApJ, in press) #### Burning of a WD at 2.5 sec - Blobs mix into layers corresponding to about 8000 km/sec in the hom. ph. #### **Some Remarks:** - pre-expansion depends on the amount of burning (-> does not depend on details of burning) - expansion becomes spherical - but inhomogenities in the abundances - size and amount of burning depends on C/O ## **Transition from Deflagration to Detonation** #### Possible mechanism: - 1) Zeldovich mechanism: Mixing from burned and unburned material (Khokhlov et al. 1997, Niemeyer et al. 1997) - Problem: works only for low fluctuations in the background - 2) Crossing shock waves (e.g. Livne 1997) - Problem: Is the 'noise' sufficient or do we need some reflection at boundaries? - 3) Shear flows at low densities (e.g. Livne/Aspen workshop 1998) - Problem: Does it work? #### 3-D Structure for a deflagration model WD: Mch, rho(c)=2E9 g/ccm **Day 01** **Day 21** Contour: 2% of maximum Ni deposition - Energy deposition is highly aspherical early on but spherical later on #### 3-D spectrum for a deflagration model (Example at day 23) Remark: Likely, a DDT would produce an almost spherical Ni distribution but ... #### Delayed detonation models for various transition densities rho(tr) [M(MS)=3 Mo; Z=1.E-3 solar; rho(c)=2E9 g/ccm with rho(tr)=8, 10,12,14,16,18,20,23,25,27 g/ccm] Rem.: similar explosion energyies but very different chemical structures (Fact. 6 in M(Ni)) !!! Rem2.: Minimum Ni mass is given by burning during the deflagration phase #### **III) Correlations: The Brightness Decline Relation** Remarks on Opacities & Emissivities (Hoeflich et al. 1992, AA 268, 510) Frequency dependence of $\chi(\nu, T, \rho, dv/dr)$ between 1000 -20000 Å #### Average Opacity as a function of Temperature - Opacity drops fast for T < 10000 K #### Reasons: - Emissivity shifts into the optical - line blanketing is less in optical vs. UV - thermalization is higher Consistency check: $L(\bar{\kappa})vs.L(\kappa_{\nu})$ See brightness decline relation #### **Correlations for DD-Models** - rho(tr) determines M(Ni) (structure of WD and rho(c) produce a spread of 0.4mag) #### Delayed detonation models for various central densities [M(MS)=3 Mo; Z=1.E-3 solar; rho(tr)=2.3E7g/ccm] #### Remark: The central density depends on the accretion rate on the WD - rho(c) determines the size of region with production of neutron-rich isotopes - M(Ni) production changes by 20 % between rho(c) 1E9 to 6E9 g/ccm ## IV) Individual Objects: SN94D vs. DD-models LCs up to day 80 C/O WD with rho(c)=2.E9g/ccm rho(tr)=2.4E7 g/ccm #### Spectra between 3000 and 8000 A: SN94D vs. M36 C/O WD; rho(c)=2.E9g/ccm; rho(tr)=2.4E7 g/ccm - 8 days after explosion = 1 week before maximum - spectrum is dominated by intermediate mass elements (S,Si)+ iron group elements - 16 days after the explosion = maximum light - spectrum is dominated by Si, S, Ca + iron group elements (formed in transition layer between Si and Ni/Co/Fe - 30 days after explosion - = 2 weeks after maximum - spectrum is formed in inner Ni/Co/Fe core ## IR-Spectra at Day -3 in Comparison with SN1994D at Day -7 Observation of SN1994D by P.Meikle - Explosive carbon burning up to the outer 1E-2 Mo - Si lines at high velocities are not due to mixing !!! # Chemical Structures for Delayed-Detonation Models C/O-WD; rho(c)=2.E9 g/ccm; M(MS)=5Mo - start with slow deflagration front RT unstable -> acceleration - Prompt transition to detonation - Produces both normal bright and subluminous SN - Avoids problem electron capture at center. (with new rates + adaptive mesh-hydro. => rho(c) may be up to 3.5E9g/ccm) - M(56Ni) = 0.701 Mo (Fits well for a lot of S NeIa) ## Mean Velocity of Ni by Late Time Spectra (Mazzali et al. 1998, ApJ 499, L49) ## IDEA: Use the line width of the 4700 A FeII-feature during late phases to determine the mean distribition of Ni List of SN: 81B, 86G, 89B, 90N, 91M, 91T, 91bg 92A, 93L, 94D, 94ae, 95D. 96X - direct measurment of Ni-distribution - Ni is indeed in the central region for both normal and subluminous SN **Model assumption:** Optically thin ## Analysis of SN1999BY (fast track) Select model based on optical LC and spectra: here, the brightness decline ratio #### IR-Analysis of SN1999BY (as followed from explosion without tuning) Ni is located include for the subliments of explosive Si burning ## IR-Analysis of SN1999BY (as followed from explosion without tuning) #### Do we have a smoldering phase or a deflagration phase? Mixing, predicted from 3-D deflagration model does not occur - No deflagration phase ? - Smoldering phase ? - Influence of rotation? In any case, importance of preconditioning of the WD is obvious. ## Influence of Level-Locking - qualitatively ok but ... some discrepancies in particular below 5000 A due to - a) locking of levels - b) frequency resolution - c) for net-rates below 1E-3, deviations from diffusion is set to zero #### **Definition of Polarization** Electromagnetic wave : $\psi(z,t) = Ee^{i(kz-\omega t)}$ $$\underline{E} = (E_x, E_y)$$ Intensity is defined as the time average over many waves $$I = I_0 + I_{90} = \overline{E_x \ E_x^* + E_y \ E_y^*} = \overline{E_x^2 + E_y^2}$$ #### Degree of polarization P $$P = (I_0 - I_{90})/(I_0 + I_{90})$$ with position angle χ #### Alternative Definition: Stoke's parameters $$Q = I_0 - I_{90}$$ $$U = I_{45} - I_{-45}$$ V = 0 for linear polarization **Rem.:** $tan 2\chi = U/Q \text{ and } P = \sqrt{Q^2 + U^2}$ #### Polarization in SN Atmospheres by Thomson Scattering **Example**: oblate and prolate ellipsoides with and axis ratio of 2 seen from the equatorial plane: Fig. 1. Linear polarization (P) and the normalized flux (L) as a function of the maximum optical depth τ for an oblate ellipsoid $[N(r) \propto r^{-2}; \varepsilon = 0.01; E = 0.5;$ spherical inner boundary, $i = 90^{\circ}$] Fig. 5. Linear polarization (P) and the normalized flux (L) as a function of τ_{max} for a prolate ellipsoid $[N(r) \propto r^{-2}; \varepsilon = 0.01; E = 0.5;$ spherical inner boundary; $i = 90^{\circ}$] #### Dependence of P from the inclination #### P depends on the inclination of the observer! ## Polarization in Type Ia Supernovae **SN1996X around maximum light** (Wang et al. 1998, ApJ 476, 27) Comparison with a DD-model for normal bright SNIa (DD200c) no depolarization in Si II but in Fe II features general pattern is ok asphericity of 10 % in Ni-region may be present #### The subluminous SN 1998by (PhD thesis of Andy Howell, UT) - P(max) is about 0.5 % in the near continuum (lam>7000 A) and about half in the optical. Strong depolarization in Si II !!! - Suggestion: Asphericity in structure of about 15 % (preliminary) #### Polarization of the subluminous SN1999bu vs. prolate model (Howell, Hoeflich, Wang, Wheeler, ApJ, in press) ## The U/Q-plane or the nature of asymmetries - => a) random orientation in SN1996X (or noise) but also seen in SN2000el - b) axial symmetry in SN1999by #### V) Cosmology: Comparison of 27 SNeIa with Models (HK96) | ${\bf Supernovae}$ | in galaxy | $_{\mathrm{Type}}$ | v_z | \mathbf{M} -rn | $\mathrm{D}[Mpc]$ | $E_B - V$ | acceptable models | |--------------------|--------------|---------------------------|-------|------------------|-------------------|-----------|---| | SN 1937C | IC 4182 | \mathbf{Sm} | 326 | 28.3 | 4.5 ± 1 | 0.10 | N32,W7,DET2 | | SN 1970J | NGC 7619 | $\mathbf{d}\mathbf{E}$ | 4019 | 34.0 | 63 ± 8 | 0.01 | DET2ENV2/4, (PDD3) | | SN 1971G | NGC 4165 | Sb | 1703 | 32.8 | 36 ± 9 | 0.04 | M37, M36, W7, N32 | | SN 1972E | NGC~5253 | 1 | 407 | 28.0 | 4.0 ± 0.6 | 0.04 | $M35, N21, M36 \text{ (HeD12}^{-2}\text{)}$ | | SN 1972J | NGC 7634 | $_{\mathrm{SBO}}$ | 3374 | 33.6 | 52 ± 8 | 0.01 | W7,M36/37,N32,DET2 | | SN 1973N | NGC 7495 | Sc | 5126 | 34.2 | 69 ± 20 | 0.08 | N32, M36, W7, (HeD10/11) | | SN 1974G | NGC 4414 | Sc | 715 | 31.2 | 17.5 ± 5 | 0.0 | N32,M36,W7,DET2 (HeD10/11) | | SN 1975N | NGC 7723 | $_{\mathrm{SBO}}$ | 1823 | 32.2 | 28 ± 7 | 0.18: | PDD3/6/9/1a | | SN 1981B | NGC 4536 | $\mathbf{S}\mathbf{b}$ | 1647 | 31.4 | 19 ± 4 | 0.05 | M35, N21 | | SN 1983G | NGC 4753 | S | 1126 | 31.4 | 15 ± 4 | 0.29 | N32, W7 (M36) x | | SN 1984A | NGC 4419 | $\mathbf{E}_{\mathbf{P}}$ | 1187 | 31.1 | 16 ± 4 | 0.14 | DET2ENV2, PDD3/6) | | SN 1986G | NGC 5128 | 1 | 530 | 28.1 | 4.2 ± 1.2 | 0.83 | W7, N32, (M37/8) | | SN 1988U | $AC 118^{1}$ | _ | 91480 | 40.8 | 1440 ± 250 | 0.05 | M36, W7, N32 | | SN 1989B | NGC~3627 | Sb | 726 | 29.7 | 8.7 ± 3 | 0.45 | M37, M36 | | SN 1990N | NGC 4639 | Sb | 971 | 31.5 | 20 ± 5 | 0.05 | DET2ENV2/4, PDD3/1a | | SN 1990T | PGC 63925 | Sa | 11980 | 36.2 | 180 ± 30 | 0.1 | M37, M38 | | SN 1990Y | anonym. | \mathbf{E} | 11680 | 36.4 | 195 ± 45 | 0.05 | W7, N32, M36/37, PDD3/6/1c | | SN 1990af | anonym. | \mathbf{E} | 14989 | 37.1 | 265 ± 85 | 0.05 | W7, N32, M36 | | SN 1991M | IC 1151 | Sb | 2188 | 33.10 | 41 ± 10 | 0.12 | M35, PDD3 | | SN 1991T | NGC 4527 | $\mathbf{S}\mathbf{b}$ | 1727 | 30.4 | 12 ± 2 | 0.10 | PDD3/6/1a. DET2ENV2 | | SN 1991bg | NGC 4374 | $d\mathbf{E}$ | 954 | 31.3 | 18 ± 5 | 0.25 | PDD5/1c | | SN 1992G | NGC 3294 | Sc | 1592 | 32.4 | 29 ± 6 | 0.05 | M36, M35, PDD3, HeD10 | | SN 1992K | ESO269-G5 | B Bb | 2908 | 33.2 | 43^{+15}_{-8} | 0.18 | PDD5/1a,(M39, HeD2) | | SN 1992bc | ESO-G9 | S | 5960 | 34.6 | 83 ± 10 | 0.04 | PDD6/3/1c | | SN 1992bo | ESO-G57 | s | 5662 | 34.5 | 79 ± 10 | 0.03 | PDD8 | | SN 1994D | NGC 4526 | $\mathbf{S}0$ | 487 | 31.1 | 16 ± 2 | 0.00 | M36, (W7, N32) | - Delayed detonation models and, in some cases, merger scenarios (X) are consistent - Comparison of absolute brightness of models and apparent brightness provide distances - Multi-color fits provide the reddening A(Color) = R (color) E(B-V) the host galaxy is member of the cluster 118 can be ruled because spectra indicate Si at higher velocities ### HUBBLE CONSTANT (from Hoeflich and Khokhlov 1996) (Hubble law v = Ho r) based on 27 SNe~la: $67 +- 8 (2 \sigma) \text{ km/sec/Mpc}$ ### For Comparison: Miller and Branch 1995: 51 km/sec/Mpc M"uller and Hoeflich 1994: 66 +- 6 (1 σ) km/sec/Mpc Fisher et al 1995: 60 (1 σ) km/sec/Mpc Riess et al. 1996: 67 +- 5 (1 σ) km/sec/Mpc Hamuy et al. 1996: $63 +- 6 (1 \sigma) \text{ km/sec/Mpc}$ Nugent et al. 1996: 59 km/sec/Mpc 4×104 v [km/sec] 6×104 8×104 10⁶ 2×104 SNe \sim la with z < 0.05 (=230 Mpc) $67 + - 8 (2 \sigma) \text{ km/sec/Mpc}$ ### SNe \sim la with z < 0.38 (= 1.3 Gpc) - SN88z (Nordgart et al. 1988) - No evidence for local fluctuations # VI) Evolutionary Effects with Redshift (HTW98, ApJ 495, 617) INFLUENCE OF THE C/O RATIO AND Z OF THE WD Example: DD, ρ_c = 2.6E9 c.g.s.; ρ_{tr} = 2.4E7 c.g.s. ``` DD21: C/O ratio = 1/1; Z = solar DD23: C/O ratio = 2/3; Z = solar DD24: C/O ratio = 1/1; Z = solar/3 ``` v [10⁸ km/sec] - Si/S expands slower by 1000 km/s in DD23 - 0 expands slower 2000 km/s in DD23 - Metalicity has hardly any influence on dominant elements - $-M_{Ni}$ in M_o : DD21 (0.69); DD23 (0.59); DD26 (0.70) ### INFLUENCE of Z ON RARE ELEMENTS Example: DD, $\rho_{c} = 2.6E9$ c.g.s.; $\rho_{tr} = 2.4E7$ c.g.s. DD21: Z = solarDD24: Z = solar/3DD27: Z = 10*solar ⁵⁴Fe production depends sensitively on Z velocity [10⁸ km/sec] - ⁵⁴Fe is the dominant isotope at outer layers - Nuclear burning changes Fe-group abundances Ye=p/(p+n) comes from massive progenitors 14N(alpha,gam)18F(beta+)18O(alpha,gam)22Ne ### INFLUENCE ON LIGHT CURVES (0-60 Days) DD21c: C/O=1/1; Z=0.02 (solar) DD23c: C/O=2/3; Z=0.02 (solar) DD24c: C/O=1/1; Z=0.0067 (solar/3) Bolometric Light Curves ### C/O Ratio of the WD - Maxima \approx 2-3 days later (i.g. 1-5 days) - Peak to 'Tail' ratio changes by $\approx 0.3^{m}$ Metalicity Z $\,$ negligible OFF-SET in M(dM15) $dM(V) \simeq 0.1 dt(rise)$ # Change of Monochromatic Light Curves rel. DD21c # INFLUENCE ON SPECTRA DD21c: C/O=1/1; Z=0.02 (solar) DD23c: C/O=2/3; Z=0.02 (solar) DD24c: C/O=1/1; Z=0.0067 (solar/3) I) C/O ratio in the WD - smaller Doppler shift in spectra ($\approx 700 \text{ km/sec}$) II) Metalicity Z # Progenitor Structures, Metallicity Dependence and Consequences for the Light Curves of SNeIa (Hoeflich, Nomoto, Umeda & Wheeler 2000, ApJ 528, 854) # Influence of the MS mass and Z (Dominguez, Hoeflich, Straniero 2001, ApJ 557, 279) # Influence of the Progenitor properties on the LCs (Dominguez, Hoeflich & Straniero 2001, ApJ 557, 279) Study of progenitors between 1.5 to 7 Mo and Z=0 to 0.02 (solar) and a DD-model a) Influence of the mass on the main sequence - b) Influence of the matallicity Z - 5p0z22 5p0z22 -195p0z14 -19.... 5p0z14 5p0z00 5p0z00 B [mag] V [mag] -18-17-170 20 40 60 0 20 40 60 time [days] time [days] - progenitor mass is the dominant effect - maximum off-set in the brightness decline relation 0.2 mag - Δ M(offset)= 0.1 t(rise) - an off-set of 0.2 mag goes along with a reduced doppler shift of lines by 2000km/sec (Second parameter !!!) # Change of properties at maximum light Mass produced offset in Δ M(15) => critical for relation Z changes B-V by 0.05mag-> A(V)=0.15m => critical for correction by interstellar dust # Current limits on evolutionary effects up to z of about 0.8: Rise-time tV to MV: $A_V = \frac{19.4 \pm 0.2d + (0.80 \pm 0.05d)(M_V + 19.45^m)}{0.1^m}.$ (Riess et al. 1999 AJ 118, 2675) Spread in fiducial rise times (normalized to s=1) < 1 day (Aldering et al. 2000, AJ 119, 2110) ===> (with model relation) offset in $\Delta M(15)$ of less than 0.1 mag up to z=1 and most progenitors should come from a more narrow range of masses (M>3 Mo) # Summay of evolutionary effects on LCs and spectra | Feature | Effect on LC & spectra | Order of effect | |---|--|---| | Initial metallicity Z | a) little effect on B, V, R, I,b) strong influence on U and UVc) Strong, individual lines (e.g. 1mu FeII) | factor 3 in Z -> 0.2 to 0.5m
PopI -> strong line/ PopII-> no l. | | C/O ration depends on MS mass of prog. and Z | a) Change of the rise-time/decline rel.b) Expansion velocities (Doppler shift of lines)c) Peak/Tail ratio PT | $\Delta M = 0.1 \Delta t [days])$
$\Delta v(Si)[km/sec] = +20,000 \Delta M$
$PT = C \Delta M \text{ with } C \cong 1+$ | | Change of central density rho of the initial WD ->region with neutron capture increases | a) Similar brightness at maximum for same 56 Ni production but faster, earlier rise and slower decline with increasing rhob) Peak to tail ratio changesc) Si velocity at maximum light and asymtotic Si velocity is higher | A change of rho(c) from 1.5E9 to 2.5E9 g/ccm changes width of LC by 2 days = 0.2 mag PT = C Δ M with C \cong -1 Δ (Si)[km/sec] = -20,000 Δ M | | Merger/PDDs vs. classical DD | a) Slower rise and decline compared to DDb) Spectra: significant of C/O | change by about 2 to 4 days C/O down to 13,-14000 km/sec upper limit of Mg, etc. | ### **Final Discussion and Conclusions** ## **Physics of Supernovae** - LC and flux and polarization spectra allow for a detailed analysis of SN. New IR observations + polarization are a key to probe the physics of the burning fronts. - Most observations can be understood by "delayed detonation" models (or, maybe, very fast deflagration fronts). M(V)=dM(15d) is due to an opacity effect and governed by the transition density. - Preconditioning of the WD prior to the explosion is a key to understand the differences. ### **Distance Indicators and Cosmology** - Individual distances of SNe Ia are 'good' to about 15-25 %. - Ho = 67 + 7 km/sec/Mpc - Spectra and LC allow to detect evolutionary effects - Observed relation between rise and decline of LCs suggest progenitors with M(MS)>3Mo - Limits on the observed differences between local and distant SN are less than 0.1 mag -> not the end of this story => we need LAMBDA! # **Future Perspectives, Problems & Wish-list** - New generation of telescopes (VLT, SNAP,SIRTF) - How do we go into the thermonuclear runaway? - surface burning on a WD (Seismology) - nuclear burning in the non-linear regime - more polarization measurements in SNeIa - different scenarios end up as a SNeIa - quest for the nature of the dark energy